3.3.57 \(\int \frac {(d \csc (a+b x))^{3/2}}{\sqrt {c \sec (a+b x)}} \, dx\) [257]

Optimal. Leaf size=89 \[ -\frac {2 c d \sqrt {d \csc (a+b x)}}{b (c \sec (a+b x))^{3/2}}-\frac {2 d^2 E\left (\left .a-\frac {\pi }{4}+b x\right |2\right )}{b \sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)} \sqrt {\sin (2 a+2 b x)}} \]

[Out]

-2*c*d*(d*csc(b*x+a))^(1/2)/b/(c*sec(b*x+a))^(3/2)+2*d^2*(sin(a+1/4*Pi+b*x)^2)^(1/2)/sin(a+1/4*Pi+b*x)*Ellipti
cE(cos(a+1/4*Pi+b*x),2^(1/2))/b/(d*csc(b*x+a))^(1/2)/(c*sec(b*x+a))^(1/2)/sin(2*b*x+2*a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 89, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {2705, 2710, 2652, 2719} \begin {gather*} -\frac {2 d^2 E\left (\left .a+b x-\frac {\pi }{4}\right |2\right )}{b \sqrt {\sin (2 a+2 b x)} \sqrt {c \sec (a+b x)} \sqrt {d \csc (a+b x)}}-\frac {2 c d \sqrt {d \csc (a+b x)}}{b (c \sec (a+b x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d*Csc[a + b*x])^(3/2)/Sqrt[c*Sec[a + b*x]],x]

[Out]

(-2*c*d*Sqrt[d*Csc[a + b*x]])/(b*(c*Sec[a + b*x])^(3/2)) - (2*d^2*EllipticE[a - Pi/4 + b*x, 2])/(b*Sqrt[d*Csc[
a + b*x]]*Sqrt[c*Sec[a + b*x]]*Sqrt[Sin[2*a + 2*b*x]])

Rule 2652

Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a*Sin[e +
f*x]]*(Sqrt[b*Cos[e + f*x]]/Sqrt[Sin[2*e + 2*f*x]]), Int[Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b, e, f},
 x]

Rule 2705

Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[(-a)*b*(a*Cs
c[e + f*x])^(m - 1)*((b*Sec[e + f*x])^(n - 1)/(f*(m - 1))), x] + Dist[a^2*((m + n - 2)/(m - 1)), Int[(a*Csc[e
+ f*x])^(m - 2)*(b*Sec[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] && IntegersQ[2*m, 2*n] &&
  !GtQ[n, m]

Rule 2710

Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(a*Csc[e + f*
x])^m*(b*Sec[e + f*x])^n*(a*Sin[e + f*x])^m*(b*Cos[e + f*x])^n, Int[1/((a*Sin[e + f*x])^m*(b*Cos[e + f*x])^n),
 x], x] /; FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[m - 1/2] && IntegerQ[n - 1/2]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin {align*} \int \frac {(d \csc (a+b x))^{3/2}}{\sqrt {c \sec (a+b x)}} \, dx &=-\frac {2 c d \sqrt {d \csc (a+b x)}}{b (c \sec (a+b x))^{3/2}}-\left (2 d^2\right ) \int \frac {1}{\sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)}} \, dx\\ &=-\frac {2 c d \sqrt {d \csc (a+b x)}}{b (c \sec (a+b x))^{3/2}}-\frac {\left (2 d^2\right ) \int \sqrt {c \cos (a+b x)} \sqrt {d \sin (a+b x)} \, dx}{\sqrt {c \cos (a+b x)} \sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)} \sqrt {d \sin (a+b x)}}\\ &=-\frac {2 c d \sqrt {d \csc (a+b x)}}{b (c \sec (a+b x))^{3/2}}-\frac {\left (2 d^2\right ) \int \sqrt {\sin (2 a+2 b x)} \, dx}{\sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)} \sqrt {\sin (2 a+2 b x)}}\\ &=-\frac {2 c d \sqrt {d \csc (a+b x)}}{b (c \sec (a+b x))^{3/2}}-\frac {2 d^2 E\left (\left .a-\frac {\pi }{4}+b x\right |2\right )}{b \sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)} \sqrt {\sin (2 a+2 b x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 0.50, size = 80, normalized size = 0.90 \begin {gather*} -\frac {2 d^2 \left (\cot ^2(a+b x)+\sqrt [4]{-\cot ^2(a+b x)} \, _2F_1\left (-\frac {1}{2},\frac {1}{4};\frac {1}{2};\csc ^2(a+b x)\right )\right ) \tan (a+b x)}{b \sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d*Csc[a + b*x])^(3/2)/Sqrt[c*Sec[a + b*x]],x]

[Out]

(-2*d^2*(Cot[a + b*x]^2 + (-Cot[a + b*x]^2)^(1/4)*Hypergeometric2F1[-1/2, 1/4, 1/2, Csc[a + b*x]^2])*Tan[a + b
*x])/(b*Sqrt[d*Csc[a + b*x]]*Sqrt[c*Sec[a + b*x]])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(501\) vs. \(2(104)=208\).
time = 34.23, size = 502, normalized size = 5.64

method result size
default \(\frac {\left (2 \sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {\cos \left (b x +a \right )-1+\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {-1+\cos \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \EllipticE \left (\sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}, \frac {\sqrt {2}}{2}\right ) \cos \left (b x +a \right )-\cos \left (b x +a \right ) \sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {\cos \left (b x +a \right )-1+\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {-1+\cos \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \EllipticF \left (\sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}, \frac {\sqrt {2}}{2}\right )+2 \sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {\cos \left (b x +a \right )-1+\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {-1+\cos \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \EllipticE \left (\sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}, \frac {\sqrt {2}}{2}\right )-\sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {\cos \left (b x +a \right )-1+\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {-1+\cos \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \EllipticF \left (\sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}, \frac {\sqrt {2}}{2}\right )-\sqrt {2}\, \cos \left (b x +a \right )\right ) \left (\frac {d}{\sin \left (b x +a \right )}\right )^{\frac {3}{2}} \sin \left (b x +a \right ) \sqrt {2}}{b \sqrt {\frac {c}{\cos \left (b x +a \right )}}\, \cos \left (b x +a \right )}\) \(502\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*csc(b*x+a))^(3/2)/(c*sec(b*x+a))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/b*(2*cos(b*x+a)*(-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2)*((cos(b*x+a)-1+sin(b*x+a))/sin(b*x+a))^(1/2)*(
(-1+cos(b*x+a))/sin(b*x+a))^(1/2)*EllipticE((-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))-cos(b*x
+a)*(-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2)*((cos(b*x+a)-1+sin(b*x+a))/sin(b*x+a))^(1/2)*((-1+cos(b*x+a)
)/sin(b*x+a))^(1/2)*EllipticF((-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))+2*(-(cos(b*x+a)-1-sin
(b*x+a))/sin(b*x+a))^(1/2)*((cos(b*x+a)-1+sin(b*x+a))/sin(b*x+a))^(1/2)*((-1+cos(b*x+a))/sin(b*x+a))^(1/2)*Ell
ipticE((-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))-(-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2
)*((cos(b*x+a)-1+sin(b*x+a))/sin(b*x+a))^(1/2)*((-1+cos(b*x+a))/sin(b*x+a))^(1/2)*EllipticF((-(cos(b*x+a)-1-si
n(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))-2^(1/2)*cos(b*x+a))*(d/sin(b*x+a))^(3/2)*sin(b*x+a)/(c/cos(b*x+a))^(1
/2)/cos(b*x+a)*2^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*csc(b*x+a))^(3/2)/(c*sec(b*x+a))^(1/2),x, algorithm="maxima")

[Out]

integrate((d*csc(b*x + a))^(3/2)/sqrt(c*sec(b*x + a)), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*csc(b*x+a))^(3/2)/(c*sec(b*x+a))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (d \csc {\left (a + b x \right )}\right )^{\frac {3}{2}}}{\sqrt {c \sec {\left (a + b x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*csc(b*x+a))**(3/2)/(c*sec(b*x+a))**(1/2),x)

[Out]

Integral((d*csc(a + b*x))**(3/2)/sqrt(c*sec(a + b*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*csc(b*x+a))^(3/2)/(c*sec(b*x+a))^(1/2),x, algorithm="giac")

[Out]

integrate((d*csc(b*x + a))^(3/2)/sqrt(c*sec(b*x + a)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (\frac {d}{\sin \left (a+b\,x\right )}\right )}^{3/2}}{\sqrt {\frac {c}{\cos \left (a+b\,x\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d/sin(a + b*x))^(3/2)/(c/cos(a + b*x))^(1/2),x)

[Out]

int((d/sin(a + b*x))^(3/2)/(c/cos(a + b*x))^(1/2), x)

________________________________________________________________________________________